布隆过滤器 (Bloom Filter)是由Burton Howard Bloom于1970年提出,它是一种space efficient的概率型数据结构,用于判断一个元素是否在集合中。在垃圾邮件过滤的黑白名单方法、爬虫(Crawler)的网址判重模块中等等经常被用到。哈希表也能用于判断元素是否在集合中,但是布隆过滤器只需要哈希表的1/8或1/4的空间复杂度就能完成同样的问题。布隆过滤器可以插入元素,但不可以删除已有元素。其中的元素越多,false positive rate(误报率)越大,但是false negative (漏报)是不可能的。
一个empty bloom filter是一个有m bits的bit array,每一个bit位都初始化为0。并且定义有k个不同的hash function,每个都以uniform random distribution将元素hash到m个不同位置中的一个。
在下面的介绍中n为元素数,m为布隆过滤器或哈希表的slot数,k为布隆过滤器重hash function数。
为了add一个元素,用k个hash function将它hash得到bloom filter中k个bit位,将这k个bit位置1。
为了query一个元素,即判断它是否在集合中,用k个hash function将它hash得到k个bit位。若这k bits全为1,则此元素在集合中;若其中任一位不为1,则此元素比不在集合中(因为如果在,则在add时已经把对应的k个bits位置为1)。
不允许remove元素,因为那样的话会把相应的k个bits位置为0,而其中很有可能有其他元素对应的位。因此remove会引入false negative,这是绝对不被允许的。
当k很大时,设计k个独立的hash function是不现实并且困难的。对于一个输出范围很大的hash function(例如MD5产生的128 bits数),如果不同bit位的相关性很小,则可把此输出分割为k份。或者可将k个不同的初始值(例如0,1,2, … ,k-1)结合元素,feed给一个hash function从而产生k个不同的数。
当add的元素过多时,即n/m过大时(n是元素数,m是bloom filter的bits数),会导致false positive过高,此时就需要重新组建filter,但这种情况相对少见。
当可以承受一些误报时,布隆过滤器比其它表示集合的数据结构有着很大的空间优势。例如self-balance BST, tries, hash table或者array, chain,它们中大多数至少都要存储元素本身,对于小整数需要少量的bits,对于字符串则需要任意多的bits(tries是个例外,因为对于有相同prefixes的元素可以共享存储空间);而chain结构还需要为存储指针付出额外的代价。对于一个有1%误报率和一个最优k值的布隆过滤器来说,无论元素的类型及大小,每个元素只需要9.6 bits来存储。这个优点一部分继承自array的紧凑性,一部分来源于它的概率性。如果你认为1%的误报率太高,那么对每个元素每增加4.8 bits,我们就可将误报率降低为原来的1/10。add和query的时间复杂度都为O(k),与集合中元素的多少无关,这是其他数据结构都不能完成的。
以垃圾邮件过滤中黑白名单为例:现有1亿个email的黑名单,每个都拥有8 bytes的指纹信息,若采用布隆过滤器,总空间为200MB
应用时首先要先由用户决定要add的元素数n和希望的误差率P。这也是一个设计完整的布隆过滤器需要用户输入的仅有的两个参数,之后的所有参数将由系统计算,并由此建立布隆过滤器。
【原】布隆过滤器 (Bloom Filter) 详解
HyperLogLog - Big Data™ in your Browser
HyperLogLog
一、插入排序
每次将一个待排序的数据,跟前面已经有序的序列的数字一一比较找到自己合适的位置,插入到序列中,直到全部数据插入完成。
二、希尔排序
先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。由于希尔排序是对相隔若干距离的数据进行直接插入排序,因此可以形象的称希尔排序为“跳着插”
三、冒泡排序
通过交换使相邻的两个数变成小数在前大数在后,这样每次遍历后,最大的数就“沉”到最后面了。重复N次即可以使数组有序。
冒泡排序改进1:在某次遍历中如果没有数据交换,说明整个数组已经有序。因此通过设置标志位来记录此次遍历有无数据交换就可以判断是否要继续循环。
冒泡排序改进2:记录某次遍历时最后发生数据交换的位置,这个位置之后的数据显然已经有序了。因此通过记录最后发生数据交换的位置就可以确定下次循环的范围了。
四、快速排序
“挖坑填数+分治法”,首先令i =L; j = R; 将a[i]挖出形成第一个坑,称a[i]为基准数。然后j--由后向前找比基准数小的数,找到后挖出此数填入前一个坑a[i]中,再i++由前向后找比基准数大的数,找到后也挖出此数填到前一个坑a[j]中。重复进行这种“挖坑填数”直到i==j。再将基准数填入a[i]中,这样i之前的数都比基准数小,i之后的数都比基准数大。因此将数组分成二部分再分别重复上述步骤就完成了排序。
五、选择排序
数组分成有序区和无序区,初始时整个数组都是无序区,然后每次从无序区选一个最小的元素直接放到有序区的最后,直到整个数组变有序区。
六、堆排序
堆的插入就是——每次插入都是将新数据放在数组最后,而从这个新数据的父结点到根结点必定是一个有序的数列,因此只要将这个新数据插入到这个有序数列中即可。
堆的删除就是——堆的删除就是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点开始将一个数据在有序数列中进行“下沉”。
因此,堆的插入和删除非常类似直接插入排序,只不是在二叉树上进行插入过程。所以可以将堆排序形容为“树上插”
七、归并排序
归并排序主要分为两步:分数列(divide),每次把数列一分为二,然后分到只有两个元素的小数列;合数列(Merge),合并两个已经内部有序的子序列,直至所有数字有序。用递归可以实现。
八、基数排序(桶排序)
基数排序,第一步根据数字的个位分配到每个桶里,在桶内部排序,然后将数字再输出(串起来);然后根据十位分桶,继续排序,再串起来。直至所有位被比较完,所有数字已经有序。
堆在数据存取上和栈有所不同,栈是先进后出,而堆是一种优先的队列(并不是队列,堆通常是一个可以被看做一棵树的数组对象。),所谓优先队列是按照元素的优先级取出元素。举个例子,一般在饭桌上,无论你是先来后到,应该先是爷爷奶奶辈先动筷子,后面是父母,之后是你,像这种:
堆示意图:
参考: https://wenku.baidu.com/view/a0f030881ed9ad51f11df2b0.html
MurmurHash算法由Austin Appleby发明于2008年,是一种非加密hash算法,适用于基于hash查找的场景。murmurhash最新版本是MurMurHash3,支持32位,64位及128位值的产生。
MurmurHash标准使用C++实现,但是也有其他主流语言的支持版本,包括:perl、C#、ruby、python、java等。这种算法即使输入的键是有规律的,算法仍能给出一个很好的随机分布性,计算速度非常快,使用简单。因此在多个开源项目中得到应用,包括libstdc、libmemcached、nginx、hadoop等。
Raft是一种管理复制日志的一致性算法。
Raft通过选举Leader并由Leader节点负责管理日志复制来实现多副本的一致性。
在Raft中,节点有三种角色: