NIO模型
同步非阻塞
NIO有同步阻塞和同步非阻塞两种模式,一般讲的是同步非阻塞,服务器实现模式为一个请求一个线程,但客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。
AIO模型
异步非阻塞
服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理,
注:AIO又称为NIO2.0,在JDK7才开始支持。
Java对BIO、NIO、AIO的支持:
Java BIO : 同步并阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善。
Java NIO : 同步非阻塞,服务器实现模式为一个请求一个线程,即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。
Java AIO(NIO.2) : 异步非阻塞,服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理,
Netty不看重Windows上的使用,在Linux系统上,AIO的底层实现仍使用EPOLL,没有很好实现AIO,因此在性能上没有明显的优势,而且被JDK封装了一层不容易深度优化
Netty整体架构是reactor模型, 而AIO是proactor模型, 混合在一起会非常混乱,把AIO也改造成reactor模型看起来是把epoll绕个弯又绕回来
AIO还有个缺点是接收数据需要预先分配缓存, 而不是NIO那种需要接收时才需要分配缓存, 所以对连接数量非常大但流量小的情况, 内存浪费很多
Linux上AIO不够成熟,处理回调结果速度跟不到处理需求,比如外卖员太少,顾客太多,供不应求,造成处理速度有瓶颈(待验证)
(1)select==>时间复杂度O(n)
它仅仅知道了,有I/O事件发生了,却并不知道是哪那几个流(可能有一个,多个,甚至全部),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对他们进行操作。所以select具有O(n)的无差别轮询复杂度,同时处理的流越多,无差别轮询时间就越长。
select/poll模型,这些技术都有一定的缺点:如selelct最大不能超过1024、poll没有限制,但每次收到数据需要遍历每一个连接查看哪个连接有数据请求。
(2)poll==>时间复杂度O(n)
poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态, 但是它没有最大连接数的限制,原因是它是基于链表来存储的.
(3)epoll==>时间复杂度O(1)
epoll可以理解为event poll,不同于忙轮询和无差别轮询,epoll会把哪个流发生了怎样的I/O事件通知我们。所以我们说epoll实际上是事件驱动(每个事件关联上fd)的,此时我们对这些流的操作都是有意义的。(复杂度降低到了O(1))
select,poll,epoll都是IO多路复用的机制。I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。
epoll跟select都能提供多路I/O复用的解决方案。在现在的Linux内核里有都能够支持,其中epoll是Linux所特有,而select则应该是POSIX所规定,一般操作系统均有实现
C10K 问题的最大特点是:设计不够良好的程序,其性能和连接数及机器性能的关系往往是非线性的。
C10K问题本质上是操作系统的问题。对于Web1.0/2.0时代的操作系统而言, 传统的同步阻塞I/O模型都是一样的,处理的方式都是requests per second,并发10K和100的区别关键在于CPU。
创建的进程线程多了,数据拷贝频繁(缓存I/O、内核将数据拷贝到用户进程空间、阻塞), 进程/线程上下文切换消耗大, 导致操作系统崩溃,这就是C10K问题的本质!
可见,解决C10K问题的关键就是尽可能减少这些CPU等核心计算资源消耗,从而榨干单台服务器的性能,突破C10K问题所描述的瓶颈。
很多人会想当然的认为,要实现C10M(即单机千万)并发连接和处理能力,是不可能的。不过事实并非如此,现在系统已经在用你可能不熟悉甚至激进的方式支持千万级别的并发连接。
截至目前,40gpbs、32-cores、256G RAM的X86服务器在Newegg网站上的报价是几千美元。
实际上以这样的硬件配置来看,它完全可以处理1000万个以上的并发连接,如果它们不能,那是因为你选择了错误的软件,而不是底层硬件的问题。
不要让OS内核执行所有繁重的任务:将数据包处理、内存管理、处理器调度等任务从内核转移到应用程序高效地完成,让诸如Linux这样的OS只处理控制层,数据层完全交给应用程序来处理。
最终就是要设计这样一个系统,该系统可以处理千万级别的并发连接,它在200个时钟周期内处理数据包,在14万个时钟周期内处理应用程序逻辑。由于一次主存储器访问就要花费300个时钟周期,所以这是最大限度的减少代码和缓存丢失的关键。
面向数据层的系统可以每秒处理1千万个数据包,面向控制层的系统,每秒只能处理1百万个数据包。这似乎很极端,请记住一句老话:可扩展性是专业化的,为了做好一些事情,你不能把性能问题外包给操作系统来解决,你必须自己做。
是主动关闭过多,可以选择减小时间
如果客户端可控的话,那么在服务端打开KeepAlive,尽可能不让服务端主动关闭连接,而让客户端主动关闭连接,如此一来问题便迎刃而解了